如图,甲楼在乙楼的南面,它们的设计高度是若干层,每层高均为3米,冬天太阳光与水平面的夹角为30度.
(1)若要求甲楼和乙楼的设计高度均为6层,且冬天甲楼的影子不能落在乙楼上,那么建筑时两楼之间的距离BD至少为 米;
(2)由于受空间的限制,甲楼到乙楼的距离BD=21米,若仍要求冬天甲楼的影子不能落在乙楼上,那么设计甲楼时,最高应建 层.

某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共39人.
(1)他们一共抽查了多少人捐款数不少于20元的概率是多少?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有2310名学生,请估算全校学生共捐款多少元?

计算:
.
如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数
的图象上,斜边OA1,A1A2都在x轴上,则点A2的坐标是 .

已知⊙O1和⊙O2外切,半径分别为1cm和3cm,那么半径为5cm且与⊙O1、⊙O2都相切的圆一共可以作出 个.
在直角坐标系中,坐标轴上到点P(-3,-4)的距离等于5的点共有 个.
