满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交...

在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.

(1)若m=2,n=1,求A、B两点的坐标;

(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求ACB的大小;

(3)若m=2,ABC是等腰三角形,求n的值.

满分5 manfen5.com

 

 

(1)A(2,0),B(1,0);(2)∠ACB=90°; (3)①当AC=BC时,n=﹣2; ②当AC=AB时,n=﹣; ③当BC=AB时,当n>0时,n=,当n<0时,n=﹣. 【解析】 试题分析: (1)已知m,n的值,即已知抛物线解析式,求解y=0时的解即可.此时y=x2﹣(m+n)x+mn=(x﹣m)(x﹣n),所以也可直接求出方程的解,再代入m,n的值,推荐此方式,因为后问用到的可能性比较大. (2)求∠ACB,我们只能考虑讨论三角形ABC的形状来判断,所以利用条件易得﹣1=mn,进而可以用m来表示A、B点的坐标,又C已知,则易得AB、BC、AC边长.讨论即可. (3)△ABC是等腰三角形,即有三种情形,AB=AC,AB=BC,AC=BC.由(2)我们可以用n表示出其三边长,则分别考虑列方程求解n即可. 试题解析: 【解析】 (1)∵y=x2﹣(m+n)x+mn=(x﹣m)(x﹣n), ∴x=m或x=n时,y都为0, ∵m>n,且点A位于点B的右侧, ∴A(m,0),B(n,0). ∵m=2,n=1, ∴A(2,0),B(1,0). (2)∵抛物线y=x2﹣(m+n)x+mn(m>n)过C(0,﹣1), ∴﹣1=mn, ∴n=﹣, ∵B(n,0), ∴B(﹣,0). ∵AO=m,BO=﹣,CO=1 ∴AC==, BC==, AB=AO+BO=m﹣, ∵(m﹣)2=()2+()2, ∴AB2=AC2+BC2, ∴∠ACB=90°. (3)∵A(m,0),B(n,0),C(0,mn),且m=2, ∴A(2,0),B(n,0),C(0,2n). ∴AO=2,BO=|n|,CO=|2n|, ∴AC==, BC==|n|, AB=xA﹣xB=2﹣n. ①当AC=BC时,=|n|,解得n=2(A、B两点重合,舍去)或n=﹣2; ②当AC=AB时,=2﹣n,解得n=0(B、C两点重合,舍去)或n=﹣; ③当BC=AB时,|n|=2﹣n, 当n>0时,n=2﹣n,解得n=, 当n<0时,﹣n=2﹣n,解得n=﹣. 考点:二次函数综合题  
复制答案
考点分析:
相关试题推荐

准备一张矩形纸片,按如图操作:

ABE沿BE翻折,使点A落在对角线BD上的M点,将CDF沿DF翻折,使点C落在对角线BD上的N点.

(1)求证:四边形BFDE是平行四边形;

(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.

满分5 manfen5.com

 

 

查看答案

一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)

满分5 manfen5.com

 

 

查看答案

小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.

(1)两种型号的地砖各采购了多少块?

(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?

 

查看答案

网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.

满分5 manfen5.com

 

请根据图中的信息,解决下列问题:

(1)求条形统计图中a的值;

(2)求扇形统计图中18﹣23岁部分的圆心角;

(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.

 

查看答案

如图,已知点A、F、E、C在同一直线上,ABCD,ABE=CDF,AF=CE.

(1)从图中任找两组全等三角形;

(2)从(1)中任选一组进行证明.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.