满分5 > 初中数学试题 >

如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,设点E(x,y)是...

如图,抛物线经过点A(1,0),B(5,0),C(0,满分5 manfen5.com)三点,设点E(x,y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.

满分5 manfen5.com

(1)求抛物线的解析式;

(2)当点E(x,y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值?

(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求E点,F点的坐标;若不存在,请说明理由.

 

(1)抛物线的解析式为:y=x2﹣4x+; (2)S与x之间的函数关系式为:S=﹣x2+20x﹣(1<x<5),S的最大值为; (3)存在点E(,﹣),使平行四边形OEBF为正方形,此时点F坐标为(,). 【解析】 试题分析:(1)由抛物线经过点A(1,0),B(5,0),C(0,)三点,利用待定系数法求二次函数的解析式; (2)由点E(x,y)是抛物线上一动点,且位于第四象限,可得y<0,即﹣y>0,﹣y表示点E到OA的距离,又由S=2S△OBE=2××OB•|y|,即可求得平行四边形OEAF的面积S与x之间的函数关系式,结合图象,求得自变量x的取值范围; (3)由当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形,可得此时点E坐标只能(,﹣),而坐标为(,﹣)点在抛物线上,故可判定存在点E,使平行四边形OEBF为正方形. 试题解析:(1)设所求抛物线的解析式为y=ax2+bx+c, ∵抛物线经过点A(1,0),B(5,0),C(0,)三点,则由题意可得: ,解得. ∴所求抛物线的解析式为:y=x2﹣4x+; (2)∵点E(x,y)是抛物线上一动点,且在x轴下方, ∴y<0, 即﹣y>0,﹣y表示点E到OA的距离. ∵OB是平行四边形OEBF的对角线, ∴S=2S△OBE=2××OB•|y|=﹣5y=﹣5(x2﹣4x+)=﹣x2+20x﹣, ∵S=﹣(x﹣3)2+ ∴S与x之间的函数关系式为:S=﹣x2+20x﹣(1<x<5),S的最大值为; (3)∵当OB⊥EF,且OB=EF时,平行四边形OEBF是正方形, ∴此时点E坐标只能(,﹣),而坐标为(,﹣)点在抛物线上, ∴存在点E(,﹣),使平行四边形OEBF为正方形, 此时点F坐标为(,). 考点:二次函数综合题.  
复制答案
考点分析:
相关试题推荐

数学活动﹣求重叠部分的面积

满分5 manfen5.com

(1)问题情境:如图,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边ABC的内心O重合,已知OA=2,则图中重叠部分PAB的面积为       

(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图所示位置,纸片两边分别与AC,AB交于点E,F,图中重叠部分的面积与图重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.

(3)探究2:如图,若CAB=α(0°<α<90°),AD为CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与CAB的两边AC,AB分别交于点E、F,EPF=180°﹣α,求重叠部分的面积.(用α或满分5 manfen5.com的三角函数值表示)

 

查看答案

如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.

(1)求证:BEF∽△CDF;

(2)求CF的长.

满分5 manfen5.com

 

 

查看答案

为了响应岳阳市政府“低碳出行、绿色出行”的号召,某中学数学兴趣小组在全校2000名学生中就上学方式随机抽取了400名学生进行抽样调查,经统计整理绘制出图a、图b两幅不完整的统计图:

满分5 manfen5.com

A:步行;B:骑自行车;C:乘公共交通工具;D:乘私家车;E:其他.

请根据统计图提供的信息解答下列问题:

(1)图a中“B”所在扇形的圆心角为   

(2)请在图b中把条形统计图补充完整;

(3)请根据样本数据估计全校骑自行车上学的学生人数.

 

查看答案

某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?

 

查看答案

在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:

(1)求出蜡烛燃烧时y与x之间的函数关系式;

(2)求蜡烛从点燃到燃尽所用的时间.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.