满分5 > 初中数学试题 >

如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E...

如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=满分5 manfen5.comAC.

(1)求∠ACB的度数;

(2)若AC=8,求△ABF的面积.

满分5 manfen5.com

 

 

(1)∠ACB=120°. (2)24 【解析】 试题分析:(1)连接DC,由AB是⊙C的切线,可知CD⊥AB,根据CD=AC,得出∠A=30°,又AC=BC,从而可求得∠ACB的度数. (2)由(1)可得∠ACD=∠BCD=∠BCF,从而可得△ACD≌△BCF,求得∠AFB=90°,已知AC=8,根据已知求得AF=12,由于∠A=30°得出BF=AB,由勾股定理求得BF的长,从而可求得三角形的面积. 试题解析:(1)连接CD, ∵AB是⊙C的切线, ∴CD⊥AB, ∵CF=AC,CF=CE, ∴AE=CE, ∴ED=AC=EC, ∴ED=EC=CD, ∴∠ECD=60°, ∴∠A=30°, ∵AC=BC, ∴∠ACB=120°. (2)∵∠A=30°,AC=BC, ∴∠ABC=30°, ∴∠BCE=60°, 在△ACD与△BCF中 ∴△ACD≌△BCF(SAS) ∴∠ADC=∠BFC, ∵CD⊥AB, ∴CF⊥BF, ∵AC=8,CF=AC. ∴CF=4, ∴AF=12, ∵∠AFB=90°,∠A=30°, ∴BF=AB, 设BF=x,则AB=2x, ∵AF2+BF2=AB2, ∴(2x)2﹣x2=122 解得:x=4 即BF=4 ∴S△ABF= 考点:1、切线的性质;2、等腰三角形的判定与性质;3、勾股定理  
复制答案
考点分析:
相关试题推荐

用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.

(1)求y关于x的函数关系式;

(2)当x为何值时,围成的养鸡场面积为60平方米?

(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.

 

查看答案

为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)

参考数据:满分5 manfen5.com≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.

满分5 manfen5.com

 

 

查看答案

某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:

组别

分数段/分

频数/人数

频率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合计

40

1.00

(1)表中a=    ,b=    ,c=    

(2)请补全频数分布直方图;

(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.

满分5 manfen5.com

 

 

查看答案

班级准备召开主题班会,现从由3名男生和2名女生所组成的班委中,随机选取两人担任主持人,求两名主持人恰为一男一女的概率.(请用“画树状图”或“列表”等方法写出过程)

 

查看答案

如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.