满分5 > 初中数学试题 >

数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是( ) A.1 B....

数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是(  )

A.1        B.3        C.1.5        D.2

 

D 【解析】 试题分析:∵数据0,1,1,x,3,4的平均数是2, ∴(0+1+1+x+3+4)÷6=2, 解得:x=3, 把这组数据从小到大排列0,1,1,3,3,4, 最中间两个数的平均数是(1+3)÷2=2, 则这组数据的中位数是2; 故选D. 考点:1、平均数;2、中位数  
复制答案
考点分析:
相关试题推荐

某市约有4500000人,该数用科学记数法表示为(  )

A.0.45×107        B.4.5×106        C.4.5×105        D.45×105

 

查看答案

在下列四个立体图形中,俯视图为正方形的是(  )

A.满分5 manfen5.com        B.满分5 manfen5.com        C.满分5 manfen5.com        D.满分5 manfen5.com

 

查看答案

π0的值是(  )

A.π        B.0        C.1        D.3.14

 

查看答案

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).

(1)求过O、B、A三点的抛物线的解析式.

(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.

(3)作直线x=m交抛物线于点P,交线段OB于点Q,当PQB为等腰三角形时,求m的值.

满分5 manfen5.com

 

 

查看答案

倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”及后面的问题.

习题解答:

习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,EAF=45°,连接EF,则EF=BE+DF,说明理由.

解答:正方形ABCD中,AB=AD,BAD=ADC=B=90°,

ABE绕点A逆时针旋转90°至ADE′,点F、D、E′在一条直线上.

∴∠E′AF=90°﹣45°=45°=EAF,

AE′=AE,AF=AF

∴△AE′F≌△AEF(SAS)

EF=E′F=DE′+DF=BE+DF.

习题研究

观察分析:观察图(1),由解答可知,该题有用的条件是ABCD是四边形,点E、F分别在边BC、CD上;AB=AD;③∠B=D=90°;④∠EAF=满分5 manfen5.comBAD.

类比猜想:(1)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B=D时,还有EF=BE+DF吗?

研究一个问题,常从特例入手,请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当BAD=120°,EAF=60°时,还有EF=BE+DF吗?

(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=满分5 manfen5.comBAD时,EF=BE+DF吗?

归纳概括:反思前面的解答,思考每个条件的作用,可以得到一个结论“EF=BE+DF”的一般命题: 在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,B+D=180,EAF=BAD时,则EF=BE+DF 

满分5 manfen5.com

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.