四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.

(1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);
(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.
化简求值:
,a取﹣1、0、1、2中的一个数.
计算:
.
如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是 cm.

如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是 .

己知实数a、b满足a+b=5,ab=3,则a﹣b= .
