满分5 > 初中数学试题 >

如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC...

如图,在ABC中,ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.

(1)判断DE与O的位置关系,并说明理由;

(2)求证:BC2=2CD•OE;

(3)若cosBAD=满分5 manfen5.com,BE=满分5 manfen5.com,求OE的长.

满分5 manfen5.com

 

 

(1)DE为⊙O的切线,理由见解析 (2)证明见解析 (3)OE= 【解析】 试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线; (2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得; (3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得. 试题解析:(1)DE为⊙O的切线,理由如下: 连接OD,BD, ∵AB为⊙O的直径, ∴∠ADB=90°, 在Rt△BDC中,E为斜边BC的中点, ∴CE=DE=BE=BC, ∴∠C=∠CDE, ∵OA=OD, ∴∠A=∠ADO, ∵∠ABC=90°, ∴∠C+∠A=90°, ∴∠ADO+∠CDE=90°, ∴∠ODE=90°, ∴DE⊥OD,又OD为圆的半径, ∴DE为⊙O的切线; (2)∵E是BC的中点,O点是AB的中点, ∴OE是△ABC的中位线, ∴AC=2OE, ∵∠C=∠C,∠ABC=∠BDC, ∴△ABC∽△BDC, ∴,即BC2=AC•CD. ∴BC2=2CD•OE; (3)【解析】 ∵cos∠BAD=, ∴sin∠BAC=, 又∵BE=,E是BC的中点,即BC=, ∴AC=. 又∵AC=2OE, ∴OE=AC=. 考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数  
复制答案
考点分析:
相关试题推荐

已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:

桌椅型号

一套桌椅所坐学生人数(单位:人)

生产一套桌椅所需木材(单位:m3

一套桌椅的生产成本(单位:元)

一套桌椅的运费(单位:元)

A

2

0.5

100

2

B

3

0.7

120

4

 

设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.

(1)求y与x之间的关系式,并指出x的取值范围;

(2)当总费用y最小时,求相应的x值及此时y的值.

 

查看答案

如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为  

满分5 manfen5.com

 

 

查看答案

已知抛物线y=x2﹣k的顶点为P,与x轴交于点A,B,且ABP是正三角形,则k的值是   

 

查看答案

给出下列函数:y=2x﹣1;y=满分5 manfen5.comy=﹣x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是  

 

查看答案

设a,b,c,d为实数,现规定一种新的运算满分5 manfen5.com=ad﹣bc,则满足等式满分5 manfen5.com=1的x的值为  

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.