如图,已知直线
过点
和
,
是
轴正半轴上的动点,
的垂直平分线交
于点
,交
轴于点
.
(1)直接写出直线
的解析式;
(2)当
时,设
,
的面积为
,求S关于t的函数关系式;并求出S的最大值;
(3)当点Q在线段AB上(Q与A、B不重合)时,直线
过点A且与x轴平行,问在
上是否存在点C,使得
是以
为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所够数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该商场两次共购进这种牌运动服多少套?
(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(
)
已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,且PA⊥AB于点A,PO⊥AC于点M.
(1)求证:
是⊙
的切线;
(2)当
,
时,求PC的长.

如图,在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.

在本学期某次考试中,某校初二⑴、初二⑵两班学生数学成绩统计如下表:
分数 | 50 | 60 | 70 | 80 | 90 | 100 | |
人数 | 二(1)班 | 3 | 5 | 16 | 3 | 11 | 12 |
二(2)班 | 2 | 5 | 11 | 2 | 13 | 7 | |
请根据表格提供的信息回答下列问题:
(1)初二⑴班平均成绩为_________分,初二⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?
(2)二⑴班众数为________分,二⑵班众数为________分。
(3)初二⑴班及格率为_________,初二⑵班及格率为________。
(4)已知二⑴班的方差大于二⑵班的方差,那么说明什么?
某中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C点测得旗杆顶端A的仰角为30°,向前走了6米到达D点,在D点测得旗杆顶端A的仰角为60°(测角器的高度不计).
(1)
米;
(2)求旗杆AB的高度(结果保留1位小数,
).

