△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有( )

A. 1个 B. 2个 C. 3个 D. 4个
如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )
A. 相等 B. 互余 C. 互补或相等 D. 不相等
在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD沿PD翻拆,点B落在点E处,设PE交AC于F,连接CD

(1)求证:△PCF的周长=
CD;
(2)设DE交AC于G,若
,CD=6,求FG的长
如图,抛物线y=-x
+4x+5交x轴于A、B(以A左B右)两点,交y轴于点C.

(1)求直线BC的解析式;
(2)点P为抛物线第一象限函数图象上一点,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;
(3)在(2)的条件下,连接AP,抛物线上是否存在这样的点P,使得线段PA被BC平分,如果不存在,请说明理由;如果存在,求点P的坐标.
某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.
(1)甲、乙两队单独完成建校工程各需多少天?
(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?
如图:在等腰△ABC中,AB=AC,AD上BC,垂足为D,以AD为直径作⊙0,⊙0分别交AB、AC于E、F.

(1)求证:BE=CF;
(2)设AD、EF相交于G,若EF=8,BC=10,求⊙0的半径.
