2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学计数法表示为:( )
A.
B.
C.
D.![]()
如图所示的几何体的主视图是:( )

-2的相反数是( )
A.±2 B.2 C.-2 D.![]()
如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a≠0)经过点A、C.

(1)求抛物线的解析式;
(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;
(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.

小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2)设AD=x,建立关于x的方程模型,求出x的值.
某超市在销售中发现:某种新年吉祥物品平均每天可售出20套,每套盈利40元。为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售这种吉祥物上盈利1200元,那么每套应降价多少?
