方程x(x-1)=x的根是( )
A、
B、x=-2
C、
D、![]()
下列各式中计算正确的是( )
A、![]()
B、![]()
C、![]()
D、![]()
如图,在平面直角坐标系中,已知点
坐标为(2,4),直线x=2与
轴相交于点
,连结
,抛物线y=x![]()
从点
沿
方向平移,与直线x=2交于点
,顶点
到
点时停止移动.

(1)求线段
所在直线的函数解析式;
(2)设抛物线顶点
的横坐标为
,
①用
的代数式表示点
的坐标;
②当
为何值时,线段
最短;
(3)当线段
最短时,相应的抛物线上是否存在点
,使△
的面积与△
的面积相等,若存在,请求出点
的坐标;若不存在,请说明理由.
某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面
m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为
,问:此次跳水会不会失误?通过计算说明理由.
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式 .

(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,小华的身高为 ;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围 .
如图所示,MN表示某饮水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以点A为圆心.以500m为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400m.通过计算回答,如果不改变方向,输水路线是否会穿过该居民区?(
≈1.73)

