在一个口袋中装有4个完成相同的小球,把它们分别标号1、2、3、4,小明从中随机地摸出一个球.
(1)直接写出小明摸出的球标号为4的概率;
(2)若小明摸到的球不放回,记小明摸出球的标号为
,然后由小强再随机摸出一个球记为
.小明和小强在此基础上共同协商一个游戏规则:当
>
时,小明获胜,否则小强获胜.请问他们制定的游戏规则公平吗?请用树状图或列表法说明理由.
如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)

(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,
(2)写出A1,C1的坐标.
(3)求点A旋转到A1所经过的路线长.
已知二次函数
.

(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
解方程:![]()
计算:![]()
如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.

