如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).

(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)
(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;
(3)在(2)的条件下求出线段CB旋转到CB2所扫过的面积.(结果保留π)
若实数a、b、c满足 ,求
,求 的值.
的值.
已知四边形ABCD为平行四边形,点E、F分别在边AB、CD上,且AE=CF。

(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.
如图:在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

①、则梯形的高是 ;
②、若EF平分等腰梯形ABCD的周长,设BE长为 ,试用含
,试用含 的代数式表示△BEF的面积;
的代数式表示△BEF的面积;
③、是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此BE的长;若不存在,请说明理由;
④、是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1︰2的两部分?若存在,求此时BE的长;若不存在,请说明理由.
(1)、动手操作:
如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点 处,折痕为EF,若∠ABE=20°,那么
处,折痕为EF,若∠ABE=20°,那么 的度数为         .
的度数为         .
(2)、观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)、实践与运用:
将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.

甲、乙两支仪仗队队员的身高(单位:厘米)如下:
甲队:178,177,179,178,177,178,177,179,178,179;
乙队:178,179,176,178,180,178,176,178,177,180;
(1)将下表填完整:
| 身高(厘米) | 176 | 177 | 178 | 179 | 180 | 
| 甲队(人数) | 0 | 3 | 4 | 
 | 0 | 
| 乙队(人数) | 2 | 1 | 
 | 1 | 
 | 
(2)甲队队员身高的平均数为 厘米,乙队队员身高的平均数为 厘米;
(3)你认为哪支仪仗队身高更为整齐?请从方差的角度说明理由。
