满分5 > 初中数学试题 >

如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A...

如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是   
manfen5.com 满分网
此题应分四种情况考虑: ①∠POQ=∠OAH=60°,此时A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标; ②∠POQ=∠AOH=30°,此时∠POH=60°,即直线OP:y=x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标. ③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH; ④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH; 【解析】 ①当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合; 由于∠AOH=30°, 所以直线OA:y=x,联立抛物线的解析式, 得:, 解得,; 故A(,); ②当∠POQ=∠AOH=30°,此时△POQ≌△AOH; 易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式, 得:, 解得,; 故P(,3),那么A(3,); ③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH; 易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式, 得:, 解得、, 故P(,3), ∴OP=2,QP=2, ∴OH=OP=2,AH=QP=2, 故A(2,2); ④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH; 此时直线OP:y=x,联立抛物线的解析式, 得:, 解得、, ∴P(,), ∴QP=,OP=, ∴OH=QP,QP=,AH=OP=, 故A(,). 综上可知:符合条件的点A有四个,且坐标为:则符合条件的点A的坐标是 (,)或(3,)或(2,2)或(,).
复制答案
考点分析:
相关试题推荐
二次函数y=manfen5.com 满分网x2的图象如图所示,点A位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=manfen5.com 满分网x2第一象限的图象上,若△AB1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△AB1A1的边长=    ;△A1B2A2的边长=    ;△A2007B2008A2008的边长=   
manfen5.com 满分网 查看答案
如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是   
manfen5.com 满分网 查看答案
已知A、B是抛物线y=x2-4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是    (写出一对即可). 查看答案
已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=2,且经过点(-1,y1),(3,y2),试比较y1和y2的大小:y1    y2.(填“>”,“<”或“=”) 查看答案
出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=    元时,一天出售该种文具盒的总利润y最大. 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.