满分5 > 初中数学试题 >

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时...

正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

manfen5.com 满分网
(1)要证三角形ABM和MCN相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似. (2)根据(1)的相似三角形,可得出AB,BM,MC,NC的比例关系式,已知了AB=4,BM=x,可用BC和BM的长表示出CM,然后根据比例关系式求出CN的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y,x的函数关系式.然后可根据函数的性质得出y的最大值即四边形ABCN的面积的最大值,以及此时对应的x的值,也就可得出BM的长. (3)已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即,根据(1)的相似三角形可得出,因此BM=MC,M是BC的中点.即x=2. (1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°, ∵AM⊥MN, ∴∠AMN=90°, ∴∠CMN+∠AMB=90°. 在Rt△ABM中,∠MAB+∠AMB=90°, ∴∠CMN=∠MAB, ∴Rt△ABM∽Rt△MCN. (2)【解析】 ∵Rt△ABM∽Rt△MCN, ∴,即, ∴, ∴y=S梯形ABCN=(+4)•4 =-x2+2x+8 =-(x-2)2+10, 当x=2时,y取最大值,最大值为10. (3)【解析】 ∵∠B=∠AMN=90°, ∴要使△ABM∽△AMN,必须有, 由(1)知, ∴=, ∴BM=MC, ∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.
复制答案
考点分析:
相关试题推荐
如图,半圆的直径AB=10,点C在半圆上,BC=6.
(1)求弦AC的长;
(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.

manfen5.com 满分网 查看答案
如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.
(1)求证:△CDF∽△BGF;
(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.

manfen5.com 满分网 查看答案
已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
(3)设AD=2,AE=1,求⊙O直径的长.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.

manfen5.com 满分网 查看答案
如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.
(1)求manfen5.com 满分网的值;
(2)求BC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.