满分5 > 初中数学试题 >

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴...

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B'点.求B'点的坐标;
(2)求折痕CM所在直线的解析式;
(3)作B'G∥AB交CM于点G,若抛物线y=manfen5.com 满分网x2+m过点G,求抛物线的解析式,并判断以原点O为圆心,OG为半径的圆与抛物线除交点G外,是否还有交点?若有,请直接写出交点的坐标.

manfen5.com 满分网
(1)求B′的坐标就是求OB′的长,也就要知道CB′的长,而根据折叠的性质可知CB′=CB,而四边形OCBA是矩形,可得出CB=OA,、,也就得出了CB′=OA,即可求出OB′的长,也就求出了B′的坐标; (2)求CM所在直线的解析式,根据OC的长可得出C的坐标,关键是求M点的坐标,M的横坐标与A的横坐标相同,那么就要求出M的纵坐标即AM的长,(1)中已求得了OB′的长,也就求出了AB′的长,可用AM表示出MB也就是MB′的长,然后在直角三角形AB′M中用勾股定理求出AM的长,也就得出了M的坐标,然后用待定系数法求出CM所在直线的解析式. (3)(1)中已经求得了OB′的长,也就是G的横坐标,然后代入CM所在直线的解析式中求出G点的坐标,然后代入抛物线的解析式中求出m的值,即可得出抛物线的解析式.根据抛物线和圆的对称性可得出抛物线与圆的另外一个交点就应该是G关于y轴的对称点. 【解析】 (1)∵△CB'M≌△CBM ∴CB'=CB=OA=10 ∴OB'==8 ∴B'(8,0); (2)设AM=n,则MB'=BM=6-n AB'=10-8=2 ∴n2+22=(6-n)2 解得n=. ∴M(10,)、C(0,6) 设直线CM解析式为y=kx+b ∴ 解得 ∴直线CM的解析式为y=-x+6; (3)设G(8,a) ∴a=-×8+6= ∴G(8,) ∴+m ∴m=- ∴y=x2- 除交点G外,另有交点为点G关于y轴的对称点. 其坐标为(-8,).
复制答案
考点分析:
相关试题推荐
已知函数y=x2-4x+1
(1)求函数的最小值;
(2)在给定坐标系中,画出函数的图象;
(3)设函数图象与x轴的交点为A(x1,0)、B(x2,0),求x12+x22的值.

manfen5.com 满分网 查看答案
如图,抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+6,与x轴交于A、B两点,与y轴相交于C点.
(1)求△ABC的面积;
(2)已知E点(0,-3),在第一象限的抛物线上取点D,连接DE,使DE被x轴平分,试判定四边形ACDE的形状,并证明你的结论.

manfen5.com 满分网 查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
查看答案
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1
(1)在图中画出△A1OB1
(2)求经过A,A1,B1三点的抛物线的解析式.

manfen5.com 满分网 查看答案
已知二次函数图象经过(2,-3),对称轴x=1,抛物线与x轴两交点距离为4,求这个二次函数的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.