如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?
(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;
(3)设t的值分别取t
1,t
2时(t
1≠t
2),所对应的三角形分别为△AF
1P
1和△AF
2P
2.试判断这两个三角形是否相似,请证明你的判断.
考点分析:
相关试题推荐
已知x
1,x
2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x
1,x
2的值;
(2)若x
1,x
2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
查看答案
如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米
2.
(1)求S与x的函数关系式;
(2)如果要围成面积为45米
2的花圃,AB的长是多少米?
(3)能围成面积比45米
2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
查看答案
某物体从上午7时至下午4时的温度M(℃)是时间t(小时)的函数:M=-2t
2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为
℃.
查看答案
将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价
元,最大利润为
元.
查看答案
在距离地面2m高的某处把一物体以初速度v
(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v
t-

gt
2(其中g是常数,通常取10m/s
2).若v
=10m/s,则该物体在运动过程中最高点距地面
m.
查看答案