如图,已知抛物线y=-

x
2+

x+2的图象与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.点M从O点出发,以每秒1个单位长度的速度向B运动,过M作x轴的垂线,交抛物线于点P,交BC于Q.
(1)求点B和点C的坐标;
(2)设当点M运动了x(秒)时,四边形OBPC的面积为S,求S与x的函数关系式,并指出自变量x的取值范围;
(3)在线段BC上是否存在点Q,使得△DBQ成为以BQ为一腰的等腰三角形?若存在,求出点Q的坐标,若不存在,说明理由.
考点分析:
相关试题推荐
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
查看答案
如图,对称轴为直线x=

的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
查看答案
实验与探究:
(1)在图1,2,3中,已知平行四边形ABCD的三个顶点A,B,D的坐标(如图所示),求出图1,2,3中的第四个顶点C的坐标,已求出图1中顶点C的坐标是(5,2),图2,3中顶点C的坐标分别是______,______;

(2)在图4中,平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);

归纳与发现:
(3)通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图4)时,则四个顶点的横坐标a,c,m,e之间的等量关系为______;纵坐标b,d,n,f之间的等量关系为______
(不必证明);运用与推广:
(4)在同一直角坐标系中有抛物线y=x
2-(5c-3)x-c和三个点

,

,H(2c,0)(其中c>0).问当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.
查看答案
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=

x
2+bx+c过点A和B,与y轴交于点C.
(1)求点C的坐标,并画出抛物线的大致图象;
(2)点Q(8,m)在抛物线y=

x
2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.
查看答案
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
(1)求y与x的函数表达式;
(2)当x为何值时,y有最大值,最大值是多少?
查看答案