满分5 >
初中数学试题 >
如图,二次函数y=-x2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足...
如图,二次函数y=-x
2-2x的图象与x轴交于点A、O,在抛物线上有一点P,满足S
△AOP=3,则点P的坐标是( )

A.(-3,-3)
B.(1,-3)
C.(-3,-3)或(-3,1)
D.(-3,-3)或(1,-3)
考点分析:
相关试题推荐
如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)
2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )

A.-3
B.1
C.5
D.8
查看答案
如图,两条抛物线y
1=-

x
2+1,y
2=

与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( )

A.8
B.6
C.10
D.4
查看答案
如图,AB、CD是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,AB=CD=16米.现在点A处观测电杆CD的视角为19°42′,视线AD与AB的夹角为59度.以点B为坐标原点,向右的水平方向为x轴的正方向,建立平面直角坐标系.
(1)求电杆AB、CD之间的距离和点D的坐标;
(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线y=

x
2+bx(b为常数).在通电情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.
查看答案
阅读理【解析】
如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.
查看答案
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当

时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当

时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当

时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案