满分5 > 初中数学试题 >

阅读理【解析】 如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在B...

阅读理【解析】
如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.manfen5.com 满分网
(1)本题要通过证△ABP和△PCD相似来解.已知∠B=∠APD=∠C,那么可得出它们的补角都相等,进而可求出∠BAP=∠DPC,∠BPA=∠PDC.由此可证得两三角形相似,即可得出所求的结论. (2)①当∠APD=60°,符合了(1)题的条件,因此(1)的结论在本题适用,可据此求出BP的长,然后在直角三角形ABO中求出OB的长,由此可得出P点的坐标. ②本题要通过相似三角形进行求解.过D作DM⊥BC于M,可分两种情况进行讨论: (一):当P在OM上时,PM=OM-OP=5-x,可证△OPE∽△MDP,从而得出y与x的函数关系式; (二):当P在CM上时,PM=OP-OM=x-5,同样可证△OPE∽△MDP,从而得出y与x的函数关系式. (1)证明:∵∠B=∠C=∠APD, ∴∠BAP+∠BPA=∠BPA+∠DPC=180°-∠B=180°-∠APD, ∴∠BAP=∠DPC, ∵∠B=∠C, ∴△ABP∽△PCD, ∴BP:CD=AB:PC, ∴BP•PC=AB•CD. (2)【解析】 ①∵∠B=∠C=∠APD=60°, 由(1)知,BP•PC=AB•CD. ∵AB=4,BC=10,CD=6, 设BP=x,则PC=BC-BP=10-x, ∴x(10-x)=4×6, 整理,得x2-10x+24=0, 解得x=4或6, 即BP=4或6. 在直角△AOP中,∠AOP=90°,∠B=60°, ∴BO=AB•cos60°=2, ∴OP=BP-BO=2或4. ∴点P的坐标为(2,0)或(4,0); ②过点D作DM⊥BC,则CM=3,DM=3, ∴OM=BC-BO-CM=10-2-3=5. 第一种情况:当点P在线段OM上, ∵∠POE=∠DMP=90°,∠OPE=∠MDP=90°-∠DPM, ∴△OPE∽△MDP, ∴OP:DM=OE:PM, ∴x:3=y:(5-x), ∴y=-x2+x(0<x≤5); 第二种情况:当点P在线段CM上, ∵∠POE=∠DMP=90°,∠OPE=∠MDP=90°-∠DPM, ∴△OPE∽△MDP, ∴OP:DM=OE:PM, ∴x:3=y:(x-5), ∴y=x2-x(5<x<8).
复制答案
考点分析:
相关试题推荐
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当manfen5.com 满分网时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案
如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

manfen5.com 满分网 查看答案
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.