满分5 > 初中数学试题 >

如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC...

如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

manfen5.com 满分网
(1)作CE⊥AB于E,根据坡度的定义进行求解; (2)要使PC与BQ相互平分,只需保证四边形CPBQ是平行四边形,即可得到关于t的方程,进行求解; (3)此题要分两种情况考虑:点Q在BC上,即0≤t≤3时;当点Q在CD上,即3<t≤4. 根据三角形的面积公式建立函数关系式,再进一步求解. 【解析】 (1)作CE⊥AB于E,则四边形ADCE是矩形. 则CE=AD=6. 又BC的坡度i=CE:BE=3:4,且BE⊥CE, 则CE:BC=3:5, 则BC=10; (2)要使PC与BQ相互平分,只需保证四边形CPBQ是平行四边形,即PB=CQ. 由(1),得AB=4+8=12,则PB=12-2t. 则12-2t=3t-10, t=4.4. (3)当0≤t≤3时,则BP=12-2t,QF=×3t=t, y=×t(12-2t)=-t2+t, 当t=3时,y最大,是16.2; 当3<t≤4时,则y=×6×(12-2t)=-6t+36, 则t=3时,y最大,是16. 综上所述,则当t=3时,y最大,是16.2.
复制答案
考点分析:
相关试题推荐
一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?
查看答案
一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:manfen5.com 满分网≈2.24,manfen5.com 满分网≈2.45,计算结果保留两个有效数字.)

manfen5.com 满分网 查看答案
某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

manfen5.com 满分网 查看答案
用大小相同的黑白两色小正方形瓷砖拼成如图所示的图形,观察图形并回答下列问题:
(1)当n=8时,图中白瓷砖有______块;
(2)第m个图中,若大正方形图形所用的瓷砖的总块数用y来表示,试求y关于m的函数关系式;
(3)黑瓷砖与白瓷砖的块数有可能相等吗?为什么?
manfen5.com 满分网
查看答案
甲车在弯路作刹车试验,收集到的数据如下表所示:
速度x
(千米/时)
510152025
刹车距离y(米)manfen5.com 满分网2manfen5.com 满分网6manfen5.com 满分网
(1)请用上表中的各对数据(x,y)作为点的坐标,在图5所示的坐标系中画出甲车刹车距离y(米)与速度x(千米/时)的函数图象,并求函数的解析式;
(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y(米)与速度x(千米/时)满足函数y=manfen5.com 满分网x,请你就两车的速度方面分析相撞的原因.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.