满分5 > 初中数学试题 >

我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日...

我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(元)与上市时间t(天)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z(元)与上市时间t(天)的关系可以近似地用如图②的抛物线表示.manfen5.com 满分网
(1)直接写出图①中表示的市场销售单价y(元)与上市时间t(天)(t>0)的函数关系式;
(2)求出图②中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式;
(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?
(说明:市场销售单价和种植成本单价的单位:元/500克.)
(1)依题意的y与x之间的函数关系式为分段函数. (2)依题意得z与a之间的函数关系式,如图得出该函数经过的坐标得出a的值. (3)设纯收益单价为W元,则W=销售单价-成本单价,根据y与x的函数关系式为分段函数可得w与x也为分段函数. 【解析】 (1)依题意,可建立函数关系式: y=. (2)由题目已知条件可设z=a(t-110)2+20, ∵图象过点(60,), ∴=a(60-110)2+20, ∴a=, ∴z=(t-110)2+20(t>0). (3)设纯收益单价为W元,则W=销售单价-成本单价, 故W=, ①当W=-(t-10)2+100(0<t<120)时,有t=10时,W最大,最大值为100; ②当W=-(t-110)2+60(120≤t<150)时,由图象知,有t=120时,W最大,最大值为59; ③当W=-(t-170)2+56(150≤t≤180)时,有t=170时,W最大,最大值为56; 综上所述,在t=10时,纯收益单价最大,最大值为100元/500g.
复制答案
考点分析:
相关试题推荐
某塑料大棚的截面如图所示,曲线部分近似看作抛物线.现测得AB=6米,最高点D到地面AB的距离DO=2.5米,点O到墙BC的距离OB=1米.借助图中的直角坐标系,回答下列问题:
(1)写出点A,B的坐标;
(2)求墙高BC.

manfen5.com 满分网 查看答案
某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?
查看答案
我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-投资成本)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?
查看答案
manfen5.com 满分网某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.设每块绿化区的长边为x m,短边为y m,工程总造价为w元.
(1)写出x的取值范围;
(2)写出y与x的函数关系式;
(3)写出w与x的函数关系式;
(4)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考数据:manfen5.com 满分网≈1.732)
查看答案
连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段时间内记录下下列数据:
时间t(秒)50100150200
速度υ(米/秒)306090120
路程x(米)7503000675012000
(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段(0≤t≤200)速度υ与时间t的函数关系、路程s与时间t的函数关系.
(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?
(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离y(米)与时间t(秒)的函数关系式.(不需要写出过程)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.