满分5 > 初中数学试题 >

已知开口向上的抛物线y=ax2-2x+|a|-4经过点(0,-3). (1)确定...

已知开口向上的抛物线y=ax2-2x+|a|-4经过点(0,-3).
(1)确定此抛物线的解析式;
(2)当x取何值时,y有最小值,并求出这个最小值.
(1)因为开口向上,所以a>0;把点(0,-3)代入抛物线y=ax2-2x+|a|-4中,得|a|-4=-3, 再根据a>0求a,从而确定抛物线解析式; (2)根据二次函数的顶点坐标,求解即可. 【解析】 (1)由抛物线过(0,-3),得: -3=|a|-4, |a|=1,即a=±1. ∵抛物线开口向上, ∴a=1, 故抛物线的解析式为y=x2-2x-3; (2)∵y=x2-2x-3=(x-1)2-4, ∴当x=1时,y有最小值-4.
复制答案
考点分析:
相关试题推荐
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x-11234
y1052125
(1)求该二次函数的关系式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
查看答案
一次函数y=x-3的图象与x轴,y轴分别交于点A,B.一个二次函数y=x2+bx+c的图象经过点A,B.
(1)求点A,B的坐标,并画出一次函数y=x-3的图象;
(2)求二次函数的解析式及它的最小值.
查看答案
manfen5.com 满分网在边长为6cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.
(1)在运动中,点E,F,G,H所形成的四边形EFGH为( )
A:平行四边形;B:矩形;C:菱形;D:正方形.

(2)四边形EFGH的面积s(cm2)随运动时间t(s)变化的图象大致是( )
manfen5.com 满分网
(3)写出四边形EFGH的面积S(cm2)关于运动时间t(s)变化的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?
查看答案
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
查看答案
已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2manfen5.com 满分网),C(0,2manfen5.com 满分网),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.