满分5 > 初中数学试题 >

y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在...

y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )
A.a≤-5
B.a≥5
C.a=3
D.a≥3
由于二次函数的顶点坐标不能确定,故应分对称轴不在[1,3]和对称轴在[1,3]内两种情况进行解答. 【解析】 第一种情况: 当二次函数的对称轴不在1≤x≤3内时,此时,对称轴一定在1≤x≤3的右边,函数方能在这个区域取得最大值, x=>3,即a>7, 第二种情况: 当对称轴在1≤x≤3内时,对称轴一定是在区间1≤x≤3的中点的右边,因为如果在中点的左边的话,就是在x=3的地方取得最大值,即: x=≥,即a≥5(此处若a取5的话,函数就在1和3的地方都取得最大值) 综合上所述a≥5. 故选B.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,矩形ABCD的长,宽分别为manfen5.com 满分网和1,且OB=1,点E(manfen5.com 满分网,2),连接AE,ED.
(1)求经过A,E,D三点的抛物线的表达式;
(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;
(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
查看答案
如图,已知A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交于另一点P,请找出抛物线上所有满足到直线AB距离为manfen5.com 满分网的点P.

manfen5.com 满分网 查看答案
已知抛物线y=x2-2x-3,将y=x2-2x-3用配方法化为y=a(x-h)2+k的形式,并指出对称轴、顶点坐标及图象与x轴、y轴的交点坐标.
查看答案
已知二次函数y=x2+4x.
(1)用配方法把该函数化为y=a(x-h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;
(2)函数图象与x轴的交点坐标.
查看答案
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1
(1)在图中画出△A1OB1
(2)求经过A,A1,B1三点的抛物线的解析式.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.