在矩形ABCD中,AB=14,BC=8,E在线段AB上,F在射线AD上.
(1)沿EF翻折,使A落在CD边上的G处(如图1),若DG=4,
①求AF的长;
②求折痕EF的长;
(2)若沿EF翻折后,点A总在矩形ABCD的内部,试求AE长的范围.
考点分析:
相关试题推荐
探究:
(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?
(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2______∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=______;
(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°-______=______,猜想∠BDA+∠CEA与∠A的关系为______.
查看答案
已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.
若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.
查看答案
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合).
(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;
(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;
(3)如图③,分别在AD、BC上取点F、C′,使得∠APF=∠BPC′,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△PBC′沿PC′翻折得到△PEC′,连接FC′,取FC′的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.
查看答案
同学们,折纸中也有很大的学问呢.黄老师出示了以下三个问题,小聪、小明、小慧分别在黑板上进行了板演,请你也解答这个问题:
在一张长方形ABCD纸片中,AD=25cm,AB=20cm,现将这张纸片按如下列图示方式折叠,分别求折痕的长.
(1)如图1,折痕为AE;
(2)如图2,P,Q分别为AB,CD的中点,折痕为AE;
(3)如图3,折痕为EF.
查看答案
如图(1),△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点;
研究(1):若沿直线DE折叠,则∠BDA′与∠A的关系是∠BDA′=2∠A;
研究(2):若折成图2的形状,猜想∠BDA′,∠CEA′和∠A关系,并说明理由;
研究(3):若折成图3的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由.
图1、

图2、

图3、
查看答案