满分5 > 初中数学试题 >

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG...

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;
(2)当折痕的另一端F在AD边上时,如图.证明四边形Bmanfen5.com 满分网GEF为菱形,并求出折痕GF的长.
根据轴对称的性质,折叠前后图形的形状和大小不变和矩形的性质及直角三角形的性质,同角的余角相等,相似三角形的判定和性质,平行四边形和菱形的判定和性质求解. 【解析】 (1)过点G作GH⊥AD,则四边形ABGH为矩形, ∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG, ∴EG=BG=10,∠FEG=∠B=90°; ∴EH=6,AE=4,∠AEF+∠HEG=90°, ∵∠AEF+∠AFE=90°, ∴∠HEG=∠AFE, 又∵∠EHG=∠A=90°, ∴△EAF∽△GHE, ∴, ∴EF=5, ∴S△EFG=EF•EG=×5×10=25. (2)由图形的折叠可知四边形ABGF≌四边形HEGF, ∴BG=EG,AB=EH,∠BGF=∠EGF, ∵EF∥BG, ∴∠BGF=∠EFG, ∴EF=EG, ∴BG=EF, ∴四边形BGEF为平行四边形, 又∵EF=EG, ∴平行四边形BGEF为菱形; 连接BE, BE,FG互相垂直平分, 在Rt△EFH中, EF=BG=10,EH=AB=8, 由勾股定理可得FH=AF=6, ∴AE=AF+EF=16, ∴BE==8, ∴BO=4, ∴OG==2, ∵四边形BGEF是菱形, ∴FG=2OG=4, 答:折痕GF的长是4.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=manfen5.com 满分网
(1)求B′点的坐标;
(2)求折痕CE所在直线的解析式.

manfen5.com 满分网 查看答案
为了向建国六十周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,…请你根据①②步骤解答下列问题:
(1)找出图中∠FEC的余角;
(2)计算EC的长.

manfen5.com 满分网 查看答案
如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.

manfen5.com 满分网 查看答案
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

manfen5.com 满分网 查看答案
(1)观察与发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:
将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.