满分5 > 初中数学试题 >

如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转...

如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?

manfen5.com 满分网
(1)需证明△ACD是等边三角形、△AFC是等边三角形,即可证明四边形AFCD是菱形.(2)可先证四边形ABCG是平行四边形,再由∠ABC=90°,可证四边形ABCG是矩形. (1)证明:Rt△DEC是由Rt△ABC绕C点旋转60°得到, ∴AC=DC,∠ACB=∠ACD=60°, ∴△ACD是等边三角形, ∴AD=DC=AC,(1分) 又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到, ∴AC=AF,∠ABF=∠ABC=90°, ∵∠ACB=∠ACD=60°, ∴△AFC是等边三角形, ∴AF=FC=AC,(3分) ∴AD=DC=FC=AF, ∴四边形AFCD是菱形.(4分) (2)四边形ABCG是矩形.(5分) 证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB, ∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形, ∴BC=AC, ∵EC=CB, ∴EC=AC, ∴E为AC中点, ∴DE⊥AC, ∴AE=EC,(6分) ∵AG∥BC, ∴∠EAG=∠ECB,∠AGE=∠EBC, ∴△AEG≌△CEB, ∴AG=BC,(7分) ∴四边形ABCG是平行四边形, ∵∠ABC=90°,(8分) ∴四边形ABCG是矩形.
复制答案
考点分析:
相关试题推荐
如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1manfen5.com 满分网
(1)线段OA1的长是______,∠AOB1的度数是______
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.
查看答案
如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn
(1)写出点M5的坐标;
(2)求△M5OM6的周长;
(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.

manfen5.com 满分网 查看答案
如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.
(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为______
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为______
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为______

manfen5.com 满分网 查看答案
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.
(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;
(2)求△ABO在上述旋转过程中所扫过的面积.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.
(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;
(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.