满分5 > 初中数学试题 >

如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时...

如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1manfen5.com 满分网
(1)线段OA1的长是______,∠AOB1的度数是______
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.
(1)图形在旋转过程中,边长和角的度数不变; (2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形; (3)平行四边形的面积=底×高=OA×OA1. (1)【解析】 因为,∠OAB=90°,OA=AB, 所以,△OAB为等腰直角三角形,即∠AOB=45°, 根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6, 对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°, 所以,∠AOB1的度数是90°+45°=135°. (2)证明:∵∠AOA1=∠OA1B1=90°, ∴OA∥A1B1, 又OA=AB=A1B1, ∴四边形OAA1B1是平行四边形. (3)【解析】 ▱OAA1B1的面积=6×6=36.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn
(1)写出点M5的坐标;
(2)求△M5OM6的周长;
(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.

manfen5.com 满分网 查看答案
如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.
(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为______
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为______
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为______

manfen5.com 满分网 查看答案
如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.
(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;
(2)求△ABO在上述旋转过程中所扫过的面积.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.
(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;
(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).manfen5.com 满分网
查看答案
如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.
(1)求证:△ADC≌△ADC′;
(2)求在旋转过程中点C扫过路径的长.(结果保留π)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.