每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图.
(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA
1B
1C
1,请画出菱形OA
1B
1C
1,并直接写出点B
1的坐标;
(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA
2B
2C
2,请画出菱形OA
2B
2C
2,并求出点B旋转到B
2的路径长.
考点分析:
相关试题推荐
课堂上,老师将图①中△AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化.当△AOB旋转90°时,得到∠A
1OB
1.已知A(4,2),B(3,0).
(1)△A
1OB
1的面积是______;A
1点的坐标为(______);B
1点的坐标为(______);
(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB绕AO的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA于D,O′A′交x轴于E.此时A′,O′和B′的坐标分别为(1,3),(3,-1)和(3,2),且O′B′经过B点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积;
(3)在(2)的条件下,△AOB外接圆的半径等于______.
查看答案

如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连接AP、PF.
(1)观察猜想AP与PF之间的大小关系,并说明理由;
(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;
(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.
查看答案
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.
查看答案
如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)观察猜想BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.
查看答案
如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=

.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.
查看答案