满分5 > 初中数学试题 >

如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,...

如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.
(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的x:b的值;
(2)在直线EE′经过原矩形的一个顶点的情形下,连接BE′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?

manfen5.com 满分网
(Ⅰ)由AB=a,AD=b,BE=x,S梯形ABEF=S梯形CDFE,结合梯形的面积公式可证得AF=EC; (Ⅱ)(1)根据题意,画出图形,结合梯形的性质求得x:b的值; (2)直线EE′经过原矩形的顶点D时,可证明四边形BE′EF是平行四边形,则BE′∥EF;当直线EE′经过原矩形的顶点A时,BE′与EF不平行. (Ⅰ)证明:∵AB=a,AD=b,BE=x,S梯形ABEF=S梯形CDFE, ∴a(x+AF)=a(EC+b-AF), ∴2AF=EC+(b-x). 又∵EC=b-x, ∴2AF=2EC. ∴AF=EC. (Ⅱ)【解析】 (1)当直线EE′经过原矩形的顶点D时,如图(一) ∵EC∥E′B′, ∴=, 由EC=b-x,E′B′=EB=x,DB′=DC+CB′=2a, 得, ∴x:b=. 当直线E′E经过原矩形的顶点A时,如图(二) 在梯形AE′B′D中, ∵EC∥E′B′,点C是DB′的中点, ∴CE=(AD+E′B′), 即b-x=(b+x), ∴x:b=. (2)如图(一),当直线EE′经过原矩形的顶点D时,BE′∥EF, 证明:连接BF, ∵FD∥BE,FD=BE, ∴四边形FBED是平行四边形, ∴FB∥DE,FB=DE, 又∵EC∥E′B′,点C是DB′的中点, ∴DE=EE′, ∴FB∥EE′,FB=EE′, ∴四边形BE′EF是平行四边形, ∴BE′∥EF. 如图(二),当直线EE′经过原矩形的顶点A时,显然BE′与EF不平行, 设直线EF与BE′交于点G,过点E′作E′M⊥BC于M,则E′M=a, ∵x:b=, ∴EM=BC=b, 若BE′与EF垂直,则有∠GBE+∠BEG=90°, 又∵∠BEG=∠FEC=∠MEE′,∠MEE′+∠ME′E=90°, ∴∠GBE=∠ME′E, 在Rt△BME′中,tan∠E′BM=tan∠GBE==, 在Rt△EME′中,tan∠ME′E==, ∴=. 又∵a>0,b>0, =, ∴当=时,BE′与EF垂直.
复制答案
考点分析:
相关试题推荐
两个全等的直角三角形ABC和DEF重叠在一起,其中AB=2,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积;
(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
manfen5.com 满分网
查看答案
正方形ABCD和正方形EFGH的边长分别为2manfen5.com 满分网manfen5.com 满分网,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)
(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=______
(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.

manfen5.com 满分网 查看答案
如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.
(1)写出点B的坐标;
(2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为3:1两部分,求点D的坐标;
(3)如果将(2)中的线段CD向下平移2个单位,得到线段C′D′,试计算四边形OAD′C′的面积.

manfen5.com 满分网 查看答案
将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′,除△ADC与△C′BA′全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)请选择其中一对加以证明.
manfen5.com 满分网
查看答案
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点Emanfen5.com 满分网与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.