满分5 > 初中数学试题 >

正方形ABCD和正方形EFGH的边长分别为2和,对角线BD和FH都在直线l上,O...

正方形ABCD和正方形EFGH的边长分别为2manfen5.com 满分网manfen5.com 满分网,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)
(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=______
(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.

manfen5.com 满分网
(1)先根据正方形的性质求出正方形的对角线分别为BD=4,FH=2,所以可求得两个正方形只有一个公共点时,中心距O1O2=O1D+O2F=2+1=3; (2)根据它们随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距之间的关系可依次求解. 【解析】 根据题意可知:BD=4,FH=2; (1)两个正方形只有一个公共点时,中心距O1O2=O1D+O2F=2+1=3; (2) O1O1 大于3 等于3 1<O1O2<3 等于1 0≤O1O2≤1 公共点的个数 1 2 无数个
复制答案
考点分析:
相关试题推荐
如图,长方形OABC中,O为平面直角坐标系的原点,A,C两点的坐标分别为(3,0),(0,5),点B在第一象限内.
(1)写出点B的坐标;
(2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为3:1两部分,求点D的坐标;
(3)如果将(2)中的线段CD向下平移2个单位,得到线段C′D′,试计算四边形OAD′C′的面积.

manfen5.com 满分网 查看答案
将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′,除△ADC与△C′BA′全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)请选择其中一对加以证明.
manfen5.com 满分网
查看答案
已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点Emanfen5.com 满分网与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
查看答案
在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).
manfen5.com 满分网
查看答案
如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.