满分5 > 初中数学试题 >

在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图...

在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).
manfen5.com 满分网
(1)由于有∠F=∠G=90°,∠FAB=∠GAC,AB=AC,故由AAS证得△ABF≌△ACG⇒BF=CG; (2)过点D作DH⊥CG于点H(如图).易证得四边形EDHG为矩形,有DE=HG,DH∥BG⇒∠GBC=∠HDC.又有AB=AC⇒∠FCD=∠GBC=∠HDC.又∠F=∠DHC=90°⇒CD=DC,可由AAS证得△FDC≌△HCD⇒DF=CH,有GH+CH=DE+DF=CG. 【解析】 (1)BF=CG; 证明:在△ABF和△ACG中 ∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC ∴△ABF≌△ACG(AAS) ∴BF=CG; (2)DE+DF=CG; 证明:过点D作DH⊥CG于点H(如图2) ∵DE⊥BA于点E,∠G=90°,DH⊥CG ∴四边形EDHG为矩形 ∴DE=HG,DH∥BG ∴∠GBC=∠HDC ∵AB=AC ∴∠FCD=∠GBC=∠HDC 又∵∠F=∠DHC=90°,CD=DC ∴△FDC≌△HCD(AAS) ∴DF=CH ∴GH+CH=DE+DF=CG,即DE+DF=CG; (3)仍然成立. 证明:过点D作DH⊥CG于点H(如图3) ∵DE⊥BA于点E,∠G=90°,DH⊥CG ∴四边形EDHG为矩形, ∴DE=HG,DH∥BG, ∴∠GBC=∠HDC, ∵AB=AC, ∴∠FCD=∠GBC=∠HDC, 又∵∠F=∠DHC=90°,CD=DC, ∴△FDC≌△HCD(AAS) ∴DF=CH, ∴GH+CH=DE+DF=CG, 即DE+DF=CG.
复制答案
考点分析:
相关试题推荐
如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.manfen5.com 满分网
查看答案
在直角坐标系内,将点A(-2,3)向右平移3个单位到B点,则点B的坐标是    查看答案
点(3,-2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为    查看答案
已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为    查看答案
在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.