满分5 > 初中数学试题 >

如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也...

如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.manfen5.com 满分网
(1)根据图形就可以猜想出结论. (2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;要证明BQ⊥AP,可以证明∠QMA=90°,只要证出∠1=∠2,∠3=∠4,∠1+∠3=90°即可证出. (3)类比(2)的证明就可以得到,结论仍成立. 【解析】 (1)AB=AP;AB⊥AP; (2)BQ=AP;BQ⊥AP. 证明:①由已知,得EF=FP,EF⊥FP, ∴∠EPF=45°. 又∵AC⊥BC, ∴∠CQP=∠CPQ=45°. ∴CQ=CP. ∵在Rt△BCQ和Rt△ACP中, BC=AC,∠BCQ=∠ACP=90°,CQ=CP, ∴△BCQ≌△ACP(SAS), ∴BQ=AP. ②如图,延长BQ交AP于点M. ∵Rt△BCQ≌Rt△ACP, ∴∠1=∠2. ∵在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4, ∴∠2+∠4=∠1+∠3=90°. ∴∠QMA=90°. ∴BQ⊥AP; (3)成立. 证明:①如图,∵∠EPF=45°, ∴∠CPQ=45°. 又∵AC⊥BC, ∴∠CQP=∠CPQ=45°. ∴CQ=CP. ∵在Rt△BCQ和Rt△ACP中, BC=AC,CQ=CP,∠BCQ=∠ACP=90°, ∴Rt△BCQ≌Rt△ACP. ∴BQ=AP. ②如图③,延长QB交AP于点N,则∠PBN=∠CBQ. ∵Rt△BCQ≌Rt△ACP, ∴∠BQC=∠APC. ∵在Rt△BCQ中,∠BQC+∠CBQ=90°, 又∵∠CBQ=∠PBN, ∴∠APC+∠PBN=90°. ∴∠PNB=90°. ∴QB⊥AP.
复制答案
考点分析:
相关试题推荐
在直角坐标系内,将点A(-2,3)向右平移3个单位到B点,则点B的坐标是    查看答案
点(3,-2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为    查看答案
已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为    查看答案
在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是    查看答案
线段AB中,端点A和端点B的坐标分别为(-2,4)和(1,3).现在把线段AB平移,使点A坐标变为(0,2),那么点B坐标变为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.