满分5 > 初中数学试题 >

如图,已知矩形ABCD. (1)在图中作出△CDB沿对角线BD所在的直线对折后的...

如图,已知矩形ABCD.
(1)在图中作出△CDB沿对角线BD所在的直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留清晰的作图痕迹,简要写明作法);
(2)设C′B与AD的交点为E,若△EBD的面积是整个矩形面积的manfen5.com 满分网,求∠DBC的度数.

manfen5.com 满分网
(1)根据对折后对应的三角形与原三角形全等作图即可; (2)△EBD的面积是整个矩形面积的,求∠DBC的度数. 【解析】 (1)作法:①作∠MBD=∠CBD, ②在BM上截取BC′=BC,连接C′D,则△C′BD就是所求作的三角形; (2)由S△BED=S矩形,得: S△BED=S△ABD ∴3S△BED=2S△ABD, ∵AD∥BC, ∴∠CBD=∠ADB, 又∵∠EBD=∠DBC, ∴∠EBD=∠EDB, ∴BE=ED=2AE, 又∵∠A=90°, ∴∠ABE=30°, ∴∠DBC=30°.
复制答案
考点分析:
相关试题推荐
如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.
证明:(1)BF=DF;(2)AE∥BD.

manfen5.com 满分网 查看答案
如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.
(1)求证:EF∥BD;
(2)若AB=7,CD=3,求线段EF的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请证明四边形AEA′F为菱形;
(2)当等腰△ABC满足什么条件时,按上述方法操作,四边形AEA′F将变成正方形.(只写结果,不作证明)

manfen5.com 满分网 查看答案
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).
请解答以下问题:
(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?
(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系.设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点),为什么?
manfen5.com 满分网
查看答案
生活中,有人喜欢把传送的便条折成形状manfen5.com 满分网,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.