满分5 > 初中数学试题 >

如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点...

如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.已知CE⊥AB.
(1)求证:EF∥BD;
(2)若AB=7,CD=3,求线段EF的长.

manfen5.com 满分网
(1)过C点作CH∥BD,交AB的延长线于点H;连接AC,交EF于点K,则AK=CK. 通过证明四边形CDBH是平行四边形,△ACH是等腰三角形,根据等腰三角形的性质,底边上的高是底边上的中线得到EK是△AHC的中位线.EK∥CH.可得EF∥BD. (2)由AB=7,CD=3,得AH=10.由折叠的性质知AE=CE,∴AE=CE=EH=5.在等腰直角三角形CHE中,由勾股定理得,CH=5=BD.由于△AFE∽△ADB.即.从而求得EF的值. (1)证明:过C点作CH∥BD,交AB的延长线于点H; 连接AC,交EF于点K,则AK=CK. ∵AB∥CD,∴BH=CD,BD=CH. ∵AD=BC,∴AC=BD=CH. ∵CE⊥AB, ∴AE=EH. ∴EK是△AHC的中位线. ∴EK∥CH. ∴EF∥BD. (2)【解析】 由(1)得BH=CD,EF∥BD. ∴∠AEF=∠ABD. ∵AB=7,CD=3, ∴AH=10. ∵AE=CE,AE=EH, ∴AE=CE=EH=5. ∵CE⊥AB,∴CH=5=BD. ∵∠EAF=∠BAD,∠AEF=∠ABD, ∴△AFE∽△ADB. ∴. ∴.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请证明四边形AEA′F为菱形;
(2)当等腰△ABC满足什么条件时,按上述方法操作,四边形AEA′F将变成正方形.(只写结果,不作证明)

manfen5.com 满分网 查看答案
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).
请解答以下问题:
(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?
(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系.设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点),为什么?
manfen5.com 满分网
查看答案
生活中,有人喜欢把传送的便条折成形状manfen5.com 满分网,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).manfen5.com 满分网
查看答案
已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DE⊥BC于点E,过点G作GF⊥BC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A′,B′,C′处.若点A′,B′,C′在矩形DEFG内或其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.
(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A′B′C′的面积;
(2)实验探究:设AD的长为m,若重叠三角形A′B′C′存在.试用含m的代数式表示重叠三角形A′B′C′的面积,并写出m的取值范围.(直接写出结果)

manfen5.com 满分网 查看答案
如图,△ABC为等腰三角形,把它沿底边BC翻折后,得到△DBC.请你判断四边形ABDC的形状,并说出你的理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.