满分5 > 初中数学试题 >

将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为...

将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.

manfen5.com 满分网
第一次折叠,AC落在AB边上,则折痕AD平分∠BAC,∠EAD=∠FAD; 第二次折叠,A、D重合,则∠EAF=∠EDF、∠EDA=∠FDA;AE=ED、AF=FD; 易证得△AED≌△AFD,得AE=AF、DE=DF,再根据第二次折叠所得到的AE=DE、AF=FD,可证得四边形AEDF的四边相等,由此可判定四边形AEDF是菱形. 证明:由第一次折叠可知:AD为∠CAB的平分线,∴∠1=∠2(2分) 由第二次折叠可知:∠CAB=∠EDF, ∵AE=ED,AF=FD, ∴∠1=∠3,∠2=∠4, ∵∠1=∠2, ∴∠3=∠4(4分), 在△AED与△AFD中 ∴△AED≌△AFD(ASA)(6分) ∴AE=AF,DE=DF, ∴EO=FO,AO=DO,AD⊥EF, 故四边形AEDF是菱形.(9分)
复制答案
考点分析:
相关试题推荐
△ABC在如图所示的平面直角坐标系中.
(1)画出△ABC关于y轴对称的△A1B1C1
(2)画出将△ABC绕点O顺时针旋转90°得到的△A2B2C2
(3)求∠CC2C1的度数.

manfen5.com 满分网 查看答案
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.

manfen5.com 满分网 查看答案
如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
manfen5.com 满分网
查看答案
含30°角的直角三角板ABC(∠B=30°)绕直角顶点C沿逆时针方向旋转角α(∠α<90°),再沿∠A的对边翻折得到△A′B′C,AB与B′C交于点M,A′B′与BC交于点N,A′B′与AB相交于点E.
(1)求证:△ACM≌△A′CN;
(2)当∠α=30°时,找出ME与MB′的数量关系,并加以说明.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.