满分5 > 初中数学试题 >

如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠...

如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当manfen5.com 满分网时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当manfen5.com 满分网时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明DE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论; (2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE; (3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析. 探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值; (2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论. 【解析】 探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得 BE=CE,∠PBE=∠C, 又∠BEP=∠CEQ, 则△BEP≌△CEQ,得EP=EQ; (2)作EM⊥AB,EN⊥BC于M,N, ∴∠EMP=∠ENC, ∵∠MEP+∠PEN=∠PEN+∠NEF=90°, ∴∠MEP=∠NEF, ∴△MEP∽△NEQ, ∴EP:EQ=EM:EN=AE:CE=1:2; (3)过E点作EM⊥AB于点M,作EN⊥BC于点N, ∵在四边形PEQB中,∠B=∠PEQ=90°, ∴∠EPB+∠EQB=180°(四边形的内角和是360°), 又∵∠EPB+∠MPE=180°(平角是180°), ∴∠MPE=∠EQN(等量代换), ∴Rt△MEP∽Rt△NEQ(AA), ∴(两个相似三角形的对应边成比例); 在Rt△AME∽Rt△ENC ∴=m= ∴=1:m=,EP与EQ满足的数量关系式为1:m, ∴0<m≤2+;(当m>2+时,EF与BC不会相交). 探究二:若AC=30cm, (1)设EQ=x,则S=x2, 所以当x=10时,面积最小,是50cm2; 当x=10时,面积最大,是75cm2. (2)当x=EB=5时,S=62.5cm2, 故当50<S≤62.5时,这样的三角形有2个; 当S=50或62.5<S≤75时,这样的三角形有一个.
复制答案
考点分析:
相关试题推荐
在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处(如图1),绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.
(1)探究:在图2中,线段AE与CF之间有怎样的大小关系?试证明你的结论;
(2)若将直角三角尺45°角的顶点放在斜边BC边的中点O处(如图3),绕O点顺时针方向旋转,其他条件不变.
①试写出y与x的函数解析式,以及x的取值范围;
②将三角尺绕O点旋转(如图4)的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.

manfen5.com 满分网 查看答案
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时OA′、B′C′分别与直线BC相交于P、Q.
(1)四边形OA′B′C′的形状是______,当α=90°时,manfen5.com 满分网的值是______
(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求manfen5.com 满分网的值;
②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积;
(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=manfen5.com 满分网BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
查看答案
如图①,将矩形ABCD沿着对角线AC分割,得到△ABC和△ACD,将△ACD绕点A按逆时针方向旋转α度,使D,A,B三点在同一直线上,得到图②,再把图②中的△ADE沿着AB方向平移s格,使点D与点A重合,得到图③,设EF与AC相交于点G.
请解答以下问题:
(1)上述过程中,α=______度,s=______格;
(2)在图③中,除了△ABC∽△EAF以外,还能找出对相似三角形;
(3)请写一对你在图③中找出的相似三角形,并加以证明.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.