满分5 > 初中数学试题 >

在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角尺,将直角...

在△ABC中,AB=AC=2,∠A=90°,取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处(如图1),绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.
(1)探究:在图2中,线段AE与CF之间有怎样的大小关系?试证明你的结论;
(2)若将直角三角尺45°角的顶点放在斜边BC边的中点O处(如图3),绕O点顺时针方向旋转,其他条件不变.
①试写出y与x的函数解析式,以及x的取值范围;
②将三角尺绕O点旋转(如图4)的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.

manfen5.com 满分网
(1)本题可通过构建三角形,通过证全等来得出AE与CF相等的关系,连接OA,那么只要证明三角形AEO和OFC全等即可,根据ASA可得出三角形AEO和OFC全等; (2)①本题可通过证△BEO∽△COF相似,得出关于x,y的比例关系,然后得出x,y的关系式; ②可根据①中得出的式子求x的值,注意要分三种情况进行讨论. 【解析】 (1)线段AE与CF之间有相等关系. 证明:连接AO.如图2, ∵AB=AC,点O为BC的中点,∠BAC=90°, ∴∠AOC=90°,∠EAO=∠C=45°,AO=OC. ∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°, ∴∠EOA=∠FOC. ∴△EOA≌△FOC, ∴AE=CF. (2)①连接AO. 如图4,∵AB=AC,∠BAC=90°, ∴∠C=∠B=45°, ∴∠BEO+∠EOB=135°, ∵∠EOF=45°, ∴∠FOC+∠EOB=135°, ∴∠FOC=∠BEO, ∴△BEO∽△COF, ∴. 在Rt△ABC中,BC==2,点O为BC的中点, ∴BO=OC=. ∵BE=x,CF=y, ∴,即xy=2, ∴. 取值范围是:0<x≤2. ②△OEF能构成等腰三角形. 当F与A重合时,x=1,此时OE=EA(或OE=EF); 当E与A重合时,此时x=2,OA=OF(或EF=OF); 当E、F分别在A点的两边时,x=,OE=OF,△OEF能构成等腰三角形.
复制答案
考点分析:
相关试题推荐
有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时OA′、B′C′分别与直线BC相交于P、Q.
(1)四边形OA′B′C′的形状是______,当α=90°时,manfen5.com 满分网的值是______
(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求manfen5.com 满分网的值;
②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积;
(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=manfen5.com 满分网BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
查看答案
如图①,将矩形ABCD沿着对角线AC分割,得到△ABC和△ACD,将△ACD绕点A按逆时针方向旋转α度,使D,A,B三点在同一直线上,得到图②,再把图②中的△ADE沿着AB方向平移s格,使点D与点A重合,得到图③,设EF与AC相交于点G.
请解答以下问题:
(1)上述过程中,α=______度,s=______格;
(2)在图③中,除了△ABC∽△EAF以外,还能找出对相似三角形;
(3)请写一对你在图③中找出的相似三角形,并加以证明.manfen5.com 满分网
查看答案
已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:①BE=CD;②△AMN是等腰三角形;
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.