满分5 > 初中数学试题 >

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角...

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
manfen5.com 满分网
(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.
(1)连接BD,证明△DMB≌△DNC.根据已知,全等条件已具备两个,再证出∠MDB=∠NDC,用ASA证明全等,四边形DMBN的面积不发生变化,因为它的面积始终等于△ABC面积的一半; (2)成立.同样利用(1)中的证明方法可以证出△DMB≌△DNC; (3)结论仍然成立,方法同(1). 【解析】 (1)①如图1,连接DB,在Rt△ABC中,AB=BC,AD=DC, ∴DB=DC=AD,∠BDC=90°, ∴∠ABD=∠C=45°, ∵∠MDB+∠BDN=∠CDN+∠BDN=90°, ∴∠MDB=∠NDC, ∴△BMD≌△CND(ASA), ∴DM=DN; ②四边形DMBN的面积不发生变化; 由①知△BMD≌△CND, ∴S△BMD=S△CND, ∴S四边形DMBN=S△DBN+S△DMB=S△DBN+S△DNC=S△DBC=S△ABC=×=; (2)DM=DN仍然成立; 证明:如图2,连接DB,在Rt△ABC中,AB=BC,AD=DC, ∴DB=DC,∠BDC=90°, ∴∠DCB=∠DBC=45°, ∴∠DBM=∠DCN=135°, ∵∠NDC+∠CDM=∠BDM+∠CDM=90°, ∴∠CDN=∠BDM, 则在△BMD和△CND中,, ∴△BMD≌△CND(ASA), ∴DM=DN. (3)DM=DN.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.
(1)请指出图中哪些线段与线段CF相等;
(2)试判断四边形DBCF是怎样的四边形,证明你的结论.

manfen5.com 满分网 查看答案
如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.
(1)求∠PCQ的度数;
(2)当AB=4,AP:PC=1:3时,求PQ的大小;
(3)当点P在线段AC上运动时(P不与A、C重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.

manfen5.com 满分网 查看答案
如图①,在Rt△ABC中,∠BAC=90°,AB=AC=manfen5.com 满分网,D、E两点分别在AC、BC上,且DE∥AB,CD=manfen5.com 满分网.将△CDE绕点C顺时针旋转,得到△CD′E′(如图②,点D′、E′分别与点D、E对应),点E′在AB上,D′E′与AC相交于点M.
(1)求∠ACE′的度数;
(2)求证:四边形ABCD′是梯形;
(3)求△AD′M的面积.

manfen5.com 满分网 查看答案
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°manfen5.com 满分网;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.
manfen5.com 满分网
查看答案
如图,△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转得到△CD′E′(使∠BCE′<180°),连接AD′、BE′,设直线BE′与AC、AD′分别交于点O、E.
(1)若△ABC为等边三角形,则manfen5.com 满分网的值为1,求∠AFB的度数;
(2)若△ABC满足∠ACB=60°,AC=manfen5.com 满分网,BC=manfen5.com 满分网,①求manfen5.com 满分网的值和∠AFB的度数;②若E为BC的中点,求△OBC面积的最大值.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.