满分5 > 初中数学试题 >

在矩形ABCD中,AB=2,AD=. (1)在边CD上找一点E,使EB平分∠AE...

在矩形ABCD中,AB=2,AD=manfen5.com 满分网
(1)在边CD上找一点E,使EB平分∠AEC,并加以说明;
(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.
①求证:点B平分线段AF;
②△PAE能否由△PFB绕P点按顺时针方向旋转而得到?若能,加以证明,并求出旋转度数;若不能,请说明理由.manfen5.com 满分网
(1)利用E是CD的中点,再加上已知边的长,得出∠AED的余弦为,根据反三角函数,可知∠AED=60°,同理可知∠CEB=60°,从而求出∠AEB=∠CEB=60°,即EB平分∠AEC. (2)利用平行线分线段成比例定理,可以得到CE:BF=CP:BP=1:2,即BF=2CE,又AB=CD=2CE,所以点B平分线段AF.因为P是三分点,结合已知边的长,可求出CP和BP的值,再利用勾股定理,可分别求出EP和BP,从而得出EP=BP,再利用SAS可证明△PAE≌△PFB,通过观察可知,∠BPE(或∠APF)就是顺时针旋转的角度. 【解析】 (1)当E为CD中点时,EB平分∠AEC, 由∠D=90°,DE=1,AD=, 推得∠DEA=60°, 同理,∠CEB=60°,从而∠AEB=60°,即EB平分∠AEC; (2)①∵CE∥BF,BP=2CP, ∴==, ∴BF=2CE, 在△ADE与△BCE中,, ∴△ADE≌△BCE(AAS), ∴DE=CE, ∴AB=CD=2CE, ∴AB=BF, 即点B平分线段AF; ②能. 证明:∵CP=,CE=1,∠C=90°, ∴EP=. 在Rt△ADE中,AE==2, ∴AE=BF, 又∵PB=, ∴PB=PE, ∵∠AEP=∠PBF=90°, ∴△PAE≌△PFB, ∴△PAE可以△PFB按照顺时针方向绕P点旋转而得到, 旋转度数为120°.
复制答案
考点分析:
相关试题推荐
如图,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2,将△AND绕点A顺时针旋转90°得△ABL,求证:△ANM≌△ALM.

manfen5.com 满分网 查看答案
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
manfen5.com 满分网
(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
manfen5.com 满分网
(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.
manfen5.com 满分网
查看答案
把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.
(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.

manfen5.com 满分网 查看答案
聪聪用两块含45°角的直角三角尺△ABC、△MNK进行一次探究活动:他将△MNK的直角顶点M放在△ABC的斜边AB的中点处,让MK经过C点(如图甲),若BC=MK=4.
(1)此时两三角尺的重叠部分(△ACM)面积为______
(2)再将图甲中的△MNK绕顶点M逆时针旋转45°得到图乙,此时两三角尺的重叠部分(四边形MDCG)面积为______
(3)据此猜想:在MK与BC相交的前提下,将△MNK绕点M旋转到任一位置(如图丙)时两三角尺的重叠部分面积为______,请说出理由.

manfen5.com 满分网 查看答案
(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.