如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.
考点分析:
相关试题推荐
如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?
查看答案
如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA
1B
1.

(1)线段OA
1的长是______,∠AOB
1的度数是______;
(2)连接AA
1,求证:四边形OAA
1B
1是平行四边形;
(3)求四边形OAA
1B
1的面积.
查看答案
如图,在直角坐标系中,已知点M
的坐标为(1,0),将线段OM
绕原点O沿逆时针方向旋转45°,再将其延长到M
1,使得M
1M
⊥OM
,得到线段OM
1;又将线段OM
1绕原点O沿逆时针方向旋转45°,再将其延长到M
2,使得M
2M
1⊥OM
1,得到线段OM
2,如此下去,得到线段OM
3,OM
4,…,OM
n(1)写出点M
5的坐标;
(2)求△M
5OM
6的周长;
(3)我们规定:把点M
n(x
n,y
n)(n=0,1,2,3…)的横坐标x
n,纵坐标y
n都取绝对值后得到的新坐标(|x
n|,|y
n|)称之为点M
n的“绝对坐标”.根据图中点M
n的分布规律,请你猜想点M
n的“绝对坐标”,并写出来.
查看答案
平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
查看答案
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.
查看答案