满分5 > 初中数学试题 >

如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时...

如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1manfen5.com 满分网
(1)线段OA1的长是______,∠AOB1的度数是______
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.
(1)图形在旋转过程中,边长和角的度数不变; (2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形; (3)平行四边形的面积=底×高=OA×OA1. (1)【解析】 因为,∠OAB=90°,OA=AB, 所以,△OAB为等腰直角三角形,即∠AOB=45°, 根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6, 对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°, 所以,∠AOB1的度数是90°+45°=135°. (2)证明:∵∠AOA1=∠OA1B1=90°, ∴OA∥A1B1, 又OA=AB=A1B1, ∴四边形OAA1B1是平行四边形. (3)【解析】 ▱OAA1B1的面积=6×6=36.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn
(1)写出点M5的坐标;
(2)求△M5OM6的周长;
(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.

manfen5.com 满分网 查看答案
平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
manfen5.com 满分网
查看答案
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.

manfen5.com 满分网 查看答案
如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作▱APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)▱APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
manfen5.com 满分网
查看答案
如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.
(1)求证:△ADE≌△ABF;
(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.