如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA
1B
1.

(1)线段OA
1的长是______,∠AOB
1的度数是______;
(2)连接AA
1,求证:四边形OAA
1B
1是平行四边形;
(3)求四边形OAA
1B
1的面积.
考点分析:
相关试题推荐
如图,在直角坐标系中,已知点M
的坐标为(1,0),将线段OM
绕原点O沿逆时针方向旋转45°,再将其延长到M
1,使得M
1M
⊥OM
,得到线段OM
1;又将线段OM
1绕原点O沿逆时针方向旋转45°,再将其延长到M
2,使得M
2M
1⊥OM
1,得到线段OM
2,如此下去,得到线段OM
3,OM
4,…,OM
n(1)写出点M
5的坐标;
(2)求△M
5OM
6的周长;
(3)我们规定:把点M
n(x
n,y
n)(n=0,1,2,3…)的横坐标x
n,纵坐标y
n都取绝对值后得到的新坐标(|x
n|,|y
n|)称之为点M
n的“绝对坐标”.根据图中点M
n的分布规律,请你猜想点M
n的“绝对坐标”,并写出来.
查看答案
平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.
查看答案
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.
查看答案
如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作▱APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)▱APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
查看答案
如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.
(1)求证:△ADE≌△ABF;
(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?
查看答案