满分5 > 初中数学试题 >

如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点...

如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF=______°,猜想∠QFC=______°;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=2manfen5.com 满分网,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.

manfen5.com 满分网
(1)∠EBF与∠ABE互余,而∠ABE=60°,即可求得∠EBF的度数;利用观察法,或量角器测量的方法即可求得∠QFC的度数; (2)根据三角形的外角等于不相邻的两内角的和,证明∠BAP=∠EAQ,进而得到△ABP≌△AEQ,证得∠AEQ=∠ABP=90°,则∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°,∠QFC=∠EBF+∠BEF; (3)过点F作FG⊥BE于点G,过点Q作QH⊥BC,根据△ABP≌△AEQ得到:设QE=BP=x,则QF=QE+EF=x+2.点Q到射线BC的距离y=QH=sin60°×QF=(x+2),即可求得函数关系式. 证明:(1)∵∠ABC=90°,∠BAE=60°, ∴∠EBF=30°;(1分) 则猜想:∠QFC=60°;(2分) (2)∠QFC=60°.                      (1分) ∵∠BAP=∠BAE+∠EAP=60°+∠EAP,∠EAQ=∠QAP+∠EAP=60°+∠EAP, ∴∠BAP=∠EAQ 在△ABP和△AEQ中, , ∴△ABP≌△AEQ (SAS) ∴∠AEQ=∠ABP=90° ∴∠BEF=180°-∠AEQ-∠AEB=180°-90°-60°=30°, ∴∠QFC=∠EBF+∠BEF=30°+30°=60; (3)在图1中,过点F作FG⊥BE于点G. ∵△ABE是等边三角形, ∴BE=AB=2. 由(1)得∠EBF=30°. 又∵∠QFC=60° ∴∠EBF=∠BEF, ∴BF=EF, ∵FG⊥BE ∴BG==, ∴BF==2. ∴EF=2.                                       (1分) ∵在Rt△ABP和Rt△AEQ中, ∴△ABP≌△AEQ. 设QE=BP=x, 则QF=QE+EF=x+2.                               (2分) 过点Q作QH⊥BC,垂足为H. 在Rt△QHF中,y=QH=sin60°×QF=(x+2).(x>0) 即y关于x的函数关系式是:y=x+.            (3分)
复制答案
考点分析:
相关试题推荐
在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题:
(1)图中格点△A′B′C′是由格点△ABC通过怎样变换得到的?
(2)如图建立直角坐标系后,点A的坐标为(-5,2),点B的坐标为(-5,0),请求出过A点的正比例函数的解析式,并写出图中格点△DEF各顶点的坐标.

manfen5.com 满分网 查看答案
如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.
(1)求证:△ABC≌△ADE;
(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网+manfen5.com 满分网-2-1
(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是______;在前16个图案中有______manfen5.com 满分网;第2008个图案是______
manfen5.com 满分网
查看答案
我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是______
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.
manfen5.com 满分网
查看答案
如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为manfen5.com 满分网,其中manfen5.com 满分网交CD于点P.
(1)求矩形A′BC′D′的对角线A′C′的长;
(2)求manfen5.com 满分网的长;
(3)求图中manfen5.com 满分网部分的面积.
(4)求图中manfen5.com 满分网部分的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.