如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.
(1)请在图1中画出光点P经过的路径;
(2)求光点P经过的路径总长(结果保留π).
考点分析:
相关试题推荐
如图所示,在平面直角坐标系中,梯形ABCD的顶点坐标分别为:A(2,-2),B(3,-2),C(5,0),D(1,0),将梯形ABCD绕点D逆时针旋转90°得到梯形A
1B
1C
1D.
(1)在平面直角坐标系中画出梯形A
1B
1C
1D,
则A
1的坐标为______,
B
1的坐标为______,
C
1的坐标为______;
(2)点C旋转到点C
1的路线长为______(结果保留π)
查看答案
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图.
(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA
1B
1C
1,请画出菱形OA
1B
1C
1,并直接写出点B
1的坐标;
(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA
2B
2C
2,请画出菱形OA
2B
2C
2,并求出点B旋转到B
2的路径长.
查看答案
如图所示,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.
(1)画出△ABC绕点A逆时针旋转90°后得到的△AB
1C
1;
(2)求旋转过程中动点B所经过的路径长(结果保留π).
查看答案
如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕

点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?
查看答案
如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为

的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.
查看答案