满分5 > 初中数学试题 >

如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,...

如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.
manfen5.com 满分网manfen5.com 满分网
(1)用勾股定理求矩形OABC的对角线OB长,得点B1的坐标;B1C=B1O-OC; (2)求分段函数,以A2落在BC上的时刻为界,将函数分为两段,画出图形,分别求函数解析式; (3)属于开放性问题,解法多种,主要是围绕旋转,平移轴对称解题. 【解析】 (1)如图1,因为OB1=OB==5, 所以点B1的坐标为(0,5). 因为C(0,4),所以OC=4, 则B1C=OB1-OC=5-4=1. (2)在矩形OA1B1C1沿y轴向上平移到P点与C点重合的过程中,点A1运动到矩形OABC的边BC上时, 重叠部分的面积为三角形PA2C的面积,A2C==,又A2P=3, 根据勾股定理得:CP=,即4-x= 求得P点移动的距离. 当自变量x的取值范围为0≤x<时, 如图2,由△B2CM1∽△B2A2P, 得CM1=,此时,y=S△B2A2P-S△B2CM1=×3×4-×(1+x), 即y=-(x+1)2+6(或y=-x2-x+). 当自变量x的取值范围为≤x≤4时, 求得y=S△PCM1′=(x-4)2(或y=x2-x+). (3)答案: ①把矩形PA3B3C3沿∠BPA3的角平分线所在直线对折. ②把矩形PA3B3C3绕C点顺时针旋转,使点A3与点B重合,再沿y轴向下平移4个单位长度. ③把矩形PA3B3C3绕C点顺时针旋转,使点A3与点B重合,再沿BC所在的直线对折. ④把矩形PA3B3C3沿y轴向下平移4个单位长度,再绕O点顺时针旋转,使点A3与点A重合. 提示:本问只要求整体图形的重合,不必要求图形原对应点的重合.
复制答案
考点分析:
相关试题推荐
如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究:△ABC的最大面积?

manfen5.com 满分网 查看答案
已知抛物线manfen5.com 满分网上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线manfen5.com 满分网与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

manfen5.com 满分网 查看答案
如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1
(1)在图中画出△A1OB1
(2)求经过A,A1,B1三点的抛物线的解析式.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1).
(1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称;
(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.