如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1).
(1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称;
(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.
考点分析:
相关试题推荐
如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连接AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO
1B
1,请画出△AO
1B
1,并直接写出点B
1、O
1的坐标(注:不要求证明);
(2)求经过B、A、O
1三点的抛物线对应的函数关系式,并画出抛物线的略图.
查看答案
已知反比例函数y=

的图象经过点A(-

,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m,

m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是

,设Q点的纵坐标为n,求n
2-2

n+9的值.
查看答案
如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2,

),CD为△ABC的中线,⊙M与△ACD的外接圆,BC交⊙M于点N.
(1)将直线AB绕点D顺时针旋转使得到的直线l与⊙M相切,求此时的旋转角及直线l的解析式;
(2)连接MN,试判断MN与CD是否互相垂直平分,并说明理由;
(3)在(1)中的直线l上是否存在点P,使△PAN为直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.(图2为备用图)
查看答案
如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、B的坐标分别为A(-4,0)、B(-4,2).
(1)现将矩形OABC绕点O顺时针方向旋转90°后得到矩形OA
1B
1C
1,请画出矩形OA
1B
1C
1;
(2)画出直线BC
1,并求直线BC
1的函数关系式.
查看答案
如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:
(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)
(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.
查看答案