满分5 > 初中数学试题 >

如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA的长度...

如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA的长度得到△EFA.
(1)求△ABC所扫过的图形面积;
(2)探究:AF与BE的位置关系,并说明理由.

manfen5.com 满分网
(1)△ABC所扫过的图形面积由△ABC的面积和右边四边形ABFE的面积组成.由平移可得到∠BAC=∠FEA,AE=AC=AB=EF,那么四边形BAEF是平行四边形.平行四边形被对角线分得的两个三角形的面积相等.那么△AEF的面积是3,平行四边形的面积是2△AEF的面积; (2)再由邻边相等可得到四边形ABFE是菱形,菱形的对角线互相垂直. 【解析】 (1)连接BF, 由题意得:△ABC≌△EFA,BA∥EF,且BA=EF ∴四边形ABFE为平行四边形, ∴S▱ABFE=2S△EAF, ∴△ABC扫描面积为2×3=6; (2)AF⊥BE. 证明:由(1)得四边形BAEF是平行四边形, ∵AB=AC, ∴AB=AE, ∴四边形BAEF是菱形, ∴AF⊥BE.
复制答案
考点分析:
相关试题推荐
如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.
(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的x:b的值;
(2)在直线EE′经过原矩形的一个顶点的情形下,连接BE′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?

manfen5.com 满分网 查看答案
如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.
(1)求四边形CEFB的面积;
(2)试判断AF与BE的位置关系,并说明理由;
(3)若∠BEC=15°,求AC的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.
(1)证明△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.
查看答案
(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

manfen5.com 满分网 manfen5.com 满分网 查看答案
正方形ABCD和正方形EFGH的边长分别为2manfen5.com 满分网manfen5.com 满分网,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)
(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=______
(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.