满分5 > 初中数学试题 >

已知:半径为1的⊙O1与x轴交于A、B两点,圆心O1的坐标为(2,0),二次函数...

已知:半径为1的⊙O1与x轴交于A、B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A、B两点,其顶点为F.
(1)求b、c的值及二次函数顶点F的坐标;
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个单位再向左平移2个单位的图象的函数表达式;
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.

manfen5.com 满分网
(1)根据⊙O1的半径和圆心的坐标,可求得A、B两点的坐标,然后将它们代入抛物线的解析式中,可求出b、c的值.进而可根据二次函数的解析式求出顶点F的坐标. (2)将原抛物线的解析式化为顶点式,然后再按题目给出的步骤,一步一步的进行平移. (3)过原点的直线是正比例函数,只需求得直线与圆的切点的坐标,即可确定直线l的解析式.(根据圆的对称性可知,符合条件的直线l应该有两条) 【解析】 (1)由已知得:A(1,0),B(3,0) 由题意: 解得: ∴y=-x2+4x-3=-(x-2)2+1 ∴顶点F(2,1) (2)y=-x2 (3)设经过原点O的直线l:y=kx(k≠0)与⊙O1相切于点C 则O1C⊥OC,OO1=2,O1C=1 ∴OC=,∠O1OC=30° 设点C的坐标为(xc,yc) 则 ∴,得 ∴y=x 由圆的对称性,另一条直线l的解析式是y=-x.
复制答案
考点分析:
相关试题推荐
已知:如图,直线manfen5.com 满分网交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
manfen5.com 满分网
查看答案
如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、Cmanfen5.com 满分网,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

manfen5.com 满分网 查看答案
如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C.
(1)求线段AB的长;
(2)求以直线AC为图象的一次函数的解析式.

manfen5.com 满分网 查看答案
(人教版)已知平面直角坐标系中,B(-3,0),A为y轴正半轴上一动点,半径为manfen5.com 满分网的⊙A交y轴于点G、H(点G在点H的上方),连接BG交⊙A于点C.
manfen5.com 满分网manfen5.com 满分网
(1)如图①,当⊙A与x轴相切时,求直线BG的解析式;
(2)如图②,若CG=2BC,求OA的长;
(3)如图③,D为半径AH上一点,且AD=1,过点D作⊙A的弦CE,连接GE并延长交x轴于点F,当⊙A与x轴相离时,给出下列结论:①manfen5.com 满分网的值不变;②OG•OF的值不变.其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值.
查看答案
如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.
(1)求直线L所对应的函数的表达式;
(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.