满分5 > 初中数学试题 >

如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥B...

如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=manfen5.com 满分网,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长;
(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为______

manfen5.com 满分网
(1)要证明DE是⊙O的切线,已知OD是圆的半径,只要证明OD⊥DE即可. (2)根据勾股定理可求得BC的长,从而可求得AB,DE的长,再根据勾股定理即可求得OE的长. (3)由第二问可知OE的长,根据题意不难求得圆E的半径r的取值范围. (1)证明:连接BD、OD, ∵AB是直径, ∴∠ADB=90°, 又∵AB=BC, ∴AD=CD. ∵AO=BO, ∴OD是△ABC的中位线, ∴OD∥BC. ∵DE⊥BC, ∴OD⊥DE, ∴DE是⊙O的切线. (2)【解析】 在Rt△CBD中,CD=,∠ACB=30° ∴BC==2, ∴BD=1,AB=2, 在Rt△CDE中,CD=,∠ACB=30° ∴DE=CD=,BC==2 ∵OD是圆O半径, ∴OD=1, ∴OE==. (3)【解析】 如图, 当圆E的半径为-1时,OG=1; 当圆E的半径为+1时,OG=1, 故.
复制答案
考点分析:
相关试题推荐
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=manfen5.com 满分网,求BD和BC的长.

manfen5.com 满分网 查看答案
如图,△ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.
(1)DF与⊙O的位置关系是______(填“相切”或“相交”).
(2)若AE=14,BC=12,BF的长为______

manfen5.com 满分网 查看答案
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,以线段AB为直径的⊙O交线段AC于点E,点M是manfen5.com 满分网的中点,OM交AC于点D,∠BOE=60°,cosC=manfen5.com 满分网,BC=2manfen5.com 满分网
(1)求∠A的度数;
(2)求证:BC是⊙O的切线;
(3)求MD的长度.
查看答案
如图,点C是半圆O的半径OB上的动点,作PC⊥AB于C.点D是半圆上位于PC左侧的点,连接BD交线段PC于E,且PD=PE.
(1)求证:PD是⊙O的切线;
(2)若⊙O的半径为manfen5.com 满分网,PC=manfen5.com 满分网,设OC=x,PD2=y.
①求y关于x的函数关系式;
②当manfen5.com 满分网时,求tanB的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.