满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点...

如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.
(1)求证:AE=CE;
(2)EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;
(3)若manfen5.com 满分网(n>0),求sin∠CAB.

manfen5.com 满分网
(1)连接DE,根据∠ABC=90°可知:AE为⊙O的直径,可得∠ADE=90°,根据CD⊥AC,AD=CD,可证AE=CE; (2)根据△ADE∽△AEF,可将AE即⊙O的直径求出; (3)根据Rt△ADE∽Rt△EDF,=n,可将DE的长表示出来,在Rt△CDE中,根据勾股定理可将CE的长表示出来,从而可将sin∠CAB的值求出. (1)证明:连接DE, ∵∠ABC=90° ∴∠ABE=90° ∴AE是⊙O直径 ∴∠ADE=90° ∴DE⊥AC 又∵D是AC的中点 ∴DE是AC的垂直平分线 ∴AE=CE; (2)【解析】 在△ADE和△EFA中, ∵∠ADE=∠AEF=90°,∠DAE=∠FAE ∴△ADE∽△EFA ∴ 即 ∴AE=2cm; (3)【解析】 ∵AE是⊙O直径,EF是⊙O的切线, ∴∠ADE=∠AEF=90° ∴Rt△ADE∽Rt△EDF ∴ ∵,AD=CD ∴CF=nCD ∴DF=(1+n)CD ∴DE=CD 在Rt△CDE中,CE2=CD2+DE2=CD2+(CD)2=(n+2)CD2 ∴CE=CD ∵∠CAB=∠DEC ∴sin∠CAB=sin∠DEC===.
复制答案
考点分析:
相关试题推荐
如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且AE⊥CE,连接CD.
(1)求证:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.
(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.
(2)若cos∠C=manfen5.com 满分网,DF=3,求⊙O的半径.
查看答案
如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9.
(1)求DC的长;
(2)求证:四边形ABCE是平行四边形.

manfen5.com 满分网 查看答案
如图,已知直角三角形ABC,
(Ⅰ)试作出经过点A,圆心O在斜边AB上,且与边BC相切于点E的⊙O及切点E和圆心O(要求:用尺规作图,保留作图痕迹,不写作法和证明);
(Ⅱ)设(Ⅰ)中所作的⊙O与边AB交于异于点A的另一点D.
求证:
(1)manfen5.com 满分网
(2)EC•BE=AC•BD.

manfen5.com 满分网 查看答案
如图1,线段PB过圆心O,交圆O于A,B两点,PC切圆O于点C,作AD⊥PC,垂足为D,连接AC,BC.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线PC变为图2中割线PCE的情形,PCE与圆O交于C,E两点,AE与BC交于点M,AD⊥PE,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:AD•AB=AC•AE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.